Учебное пособие по химии нефти и газа. Предмет химии нефти и газа

А.М.Сыркин, Э. М. Мовсумзаде

ОСНОВЫ

ХИМИИ НЕФТИ И ГАЗА

Уфа 2002

Уфимский государственный нефтяной технический

университет

А.М. Сыркин, Э.М. Мовсумзаде

ОСНОВЫ ХИМИИ НЕФТИ И ГАЗА

Учебное пособие

УДК 665.6 (075.8)

ББК 6 П 7.43

Утверждено редакционно-издательским советом УГНТУ

в качестве учебного пособия.

Рецензенты:

Зам. директора института органической химии УНЦ РАН,

доктор химических наук, профессор И.Б. Абдрахманов

Директор ГУП «Нефтехимпереработка» доктор технических наук, профессор Э.Г. Теляшев

Профессор кафедры разработки и эксплуатации нефтегазовых месторождений, доктор технических наук Зейгман Ю.В.
С 95 Сыркин А.М., Мовсумзаде Э.М.

Основы химии нефти и газа: Учеб. пособие. – Уфа: Из-во УГНТУ, 2002. – 109 с.

ISBN 5–7831–0495–7

В учебном пособии рассматриваются основные гипотезы происхождения нефти, физико-химические свойства нефтей, их классификации, свойства и реакции основных классов соединений , входящих в состав нефти и газа. Рассматриваются способы переработки нефти и газа для получения различных нефтепродуктов – моторных топлив, смазочных масел и продуктов нефтехимии, пути промышленного использования нефтяных компонентов.

Учебное пособие предназначено для студентов специальности «Нефтегазовое дело».

УДК 665.6 (075.8)

ББК 6 П 7.43

ISBN 5–7831–0495–7

© Уфимский государственный нефтяной

технический университет, 2002
© Сыркин А.М., Мовсумзаде Э.М., 2002

Учебное издание
Сыркин Алик Михайлович

Мовсумзаде Эльдар Мирсамедович

Основы химии нефти и газа

Редактор А.А. Синилова

Подписано в печать 30.10.02. Бумага офсетная № 2. Формат 60х84 1/16

Гарнитура «Таймс». Печать трафаретная. Усл.-печ. л. 7,0. Уч.-изд. л. 6,2

Тираж 300 экз. Заказ

Типография Уфимского государственного нефтяного технического

университета

Адрес издательства и типографии:

450062, г. Уфа, ул. Космонавтов, 1

Предисловие
Одной из важнейших задач курса химии нефти и газа является изучение состава нефтей и природных газов с помощью физических и физико-химических методов исследования. Химия нефти занимается также изучением физико-химическихъ свойств углеводородов и неуглеводородных компонентов нефти в связи с их строением.

Состав нефтей и газов зависит от геологических и геохимических условий образования и залегания нефтей. Поэтому изучение химического состава нефтей имеет очень большое значение для понимания геохимических процессов превращения нефтей в земной коре. Состав нефтей определяет, в свою очередь, способы их добычи и транспорта, направления и особенности их переработки для получения разнообразных продуктов.

При исследовании нефтей определяют: элементный химический состав, групповой состав, т.е. содержание в нефтях различных классов и групп соединений, индивидуальный химический состав отдельных соединений и изотопный состав нефтей.


  1. Общая характеристика нефти и газа

Нефть представляет собой взаимный сопряжённый раствор углеводородов и гетероатомных органических соединений. Надо подчеркнуть, что нефть – это не смесь веществ, а раствор углеводородов и гетероатомных органических соединений. Это означает, что при изучении нефти к ней надо подходить как к раствору.

Нефть – не просто растворённое вещество в растворителе, а взаимный раствор ближайших гомологов и иных соединений друг в друге. Наконец, сопряжённым раствор назван в том смысле, что, растворяясь друг в друге, ближайшие по строению структуры образуют систему, представляющую нефть в целом.

Если нарушается сопряжённое взаимное растворение ближайших компонентов , то может частично разрушиться и система нефти. Например, если разгонкой убрать из нефти средние фракции, то при соединении головных фракций лёгкого бензина с остаточными тяжёлыми фракциями может и не произойти растворения, а часть смолистых веществ выпадет в осадок – система сопряжённого взаимодействия будет нарушена.

Собственно нефть представляет собой жидкий ископаемый минерал, залегающий в пористых осадочных породах земной коры, в трещинах, расселинах и других пустотах материнских горных пород (гранитов, гнейсов, базальтов и т.п.)

Нефть представляет собой тёмно-коричневую, иногда почти бесцветную, а иногда даже имеющую чёрный цвет жидкость.

Нефть является горючим ископаемым наряду с каменным углем , бурым углем и сланцами, которые получили название каустоболитов. В отличие от других горючих ископаемых нефть состоит из готовой смеси различных углеводородов, тогда как для получения углеводородов из твёрдых горючих ископаемых требуется специальная термическая обработка. Поэтому нефть является ценнейшим сырьём как для получения разнообразных моторных топлив и смазочных масел, так и продуктов нефтехимического синтеза.

РЕСУРСЫ И ДОБЫЧА НЕФТИ

Термин «нефть» включает в себя: жидкие продукты широкого диапазона качества, сюда входят сверхлегкие нефти (газовый конденсат с содержанием светлой фракции более 80%), обычные нефти и сверхтяжелые (высоковязкие и природные нефтебитумы)

Мировые запасы нефти оцениваются следующими цифрами в миллиардах тонн.

1) Газовый конденсат 1-1,5

2) Обычные нефти 220-280

3) Сверхтяжелые нефти 650-750

Запасы обычной нефти распределены так:

1) На ближнем и среднем востоке примерно 60%. Среди стран этого региона первое в мире место занимает Саудовская Аравия, где сосредоточена ¼ мировых запасов нефти. огромными запасами нефти в этом регионе обладает Ирак, Иран, Кувейт и арабские страны, каждая из которых имеет 1/10 всех запасов.

2) Южная и северная Америка примерно 15%. Наиболее крупные запасы в Венесуэле, Мексике, США, Канаде, Аргентине, Бразилии.

3) Африка, примерно 8%. Ливия, Нигерия, Алжир.

4) Россия, примерно 6%. Основными регионами является Урало-Волжский, Западно-Сибирский и Северо-Кавказский.

5) На остальные страны приходится примерно 11%. Месторождение северного моря, Британские и Норвежские владения, Китай, Индонезия, Малайзия, Австралия.

Мировая добыча нефти существенно менялась по годам. Начало добычи относится к 1860 году и резко росла до 1978, а потом стала падать

Разведанных запасов нефти хватит на 100-120 лет.

Углеводородные газы

Мировые запасы природного углеводородного газа оцениваются в триллионах тонн. Из общих запасов примерно 55% приходится на Россию. Ближайший восток – 45%, Америка – 15%, Азия и Тихий океан – 10%, Африка – 10%, западная Европа – 6%(в миллиардах тонн)

Тюменская область – 86%, Оренбургская – 5,6%, Астраханская – 2%.

Современные представления о происхождении нефти, газа и их скоплений в недрах земли.

Существует две основные гипотезы происхождения нефти.

1) Биогенова – производная от растений и животных.

2) Неорганическая – произошла в недрах земли.

Менделеев утверждал, что нефть образуется на больших глубинах при высокой температуре вследствие взаимодействия воды с карбидами металлов.

Существует много гипотез происхождения нефти.

1) Магматическая

2) Карбидная

3) Механическая

4) Вулканическая

5) Взрывная

6) Космическая

Существует несколько этапов многостадийного процесса нефтеобразования в природе.

1) Осадконакопление.

После отмирания растительных и животных организмов выпадают на дно морских или пресноводных бассейнов и накапливаются в илах, рассеиваясь в минеральных остатках.

2) Биохимическая.

Накопленный на дне бассейна глубиной в несколько метров органический осадок медленно преобразуется, уплотняется, частично обезвоживается за счет протекания биохимических процессов в условиях ограниченного доступа кислорода. Этот процесс сопровождается выделением углекислоты, метана, воды, сероводорода и аммиака. Осадок одновременно пополняется за счет биосинтеза и тел бактерий. В осадке возрастает содержание углерода и водорода за счет деструктивных процессов.

3) Протокатогинез.

Пласт органических осадков медленно, со скоростью 50-300 м в миллион лет опускается на глубину 1,5-2 км, а пласт находящийся сверху покрывается слоем новых молодых осадков. По мере поступления медленно повышается температура и давление, биохимические процессы затухают вследствие гибели микроорганизмов.

4) Мезоатогинез.

Осадок опускается на глубину 3-4 км., температура повышается до 150 0 С, органическое вещество подвергается деструкции с образованием битуминозных веществ, которые в своем составе содержат почти весь комплекс нефтяного ряда.

5) Апокатогинез.

глубина нахождения осадка 4,5 км, температура 250 0 С, органическое вещество исчерпало свой нефтегенерирующий потенциал и продолжает реализовываться в метанорегенерирующий потенциал. Чем глубже, тем более легкая нефть содержится.

Классификация товарных нефтепроводов.

1) Газ (бытовой)

2) Бензины (авиабензины, автобензины)

3) Реактивные топлива.

4) Дизельное топливо.

5) Газотурбинные топлива.

6) Котельные топлива.

7) Нефтяные масла (смазочные и несмазочные) Смазочные: моторные, трансмиссионные, индустриальные, энергетические. Несмазочные (специальные): масла предназначенные не для смазки, а в качестве рабочей жидкости, в тормозных системах, насосах, а так же к ним относятся парфюмерные и смазочно-охлаждающие.

8) Нефтяные коксы, битумы, пёки.

9) Нефтехимическое сырье: ароматические углеводороды, парафины, церезины. Парафины бывают жидкие и твердые.

10) продукты специального назначения: водород, присадки, осветительный керосин, консистентные смазки. Смазки могут быть антифрикционные и защитные.

Элементный химический состав нефти.

Нефть – это смесь очень большого числа химических соединений на основе углеводорода. Полный химический состав нефти выражают двумя методами: элементарным химическим составом и групповым химическим составом.

Элементарный химический состав – это количественный состав химических элементов, входящих в нефть и выраженных в мольных долях или процентах. Число химических элементов в составе нефтей очень велико (вся таблица Менделеева), но основными из них являются:

1) углерод, содержится в различных нефтях от 83 до 87%. При чем, чем тяжелее (по плотности и фракционному составу) нефть, тем содержание углерода выше. Углерод входит в состав всех соединений нефти.

2) водород, составляет11-14%, с утяжелением нефти эта величина уменьшается. Углерод и водород являются основными горючими элементами нефти (носителями энергии, но различаются теплотой сгорания)

Водород – 133 МДж/кг

Углерод – 33 МДж/кг

В связи с этим принято характеризовать эти горючие свойство соотношением водорода к углероду (Н:С)

Это соотношение является важнейшей химической характеристикой нефти и ее фракций для расчета процесса горения, классификаций процесса газофикации, гидрогинезации, коксования и т.д.

Групповой углеводородный состав нефти.

Нефть представляет собой маслянистую жидкость, в состав которой входит углерод 87%, водород 15%, сера 0,7%, азот 2,2%, кислород 1,5%.

В нефти найдены металлы:

Вольфрам

Металлы найдены в зале.

В состав нефти входит 4 группы углеводорода. Парафиновые (алканы), непредельные углеводороды (алкены), нафтеновые и ароматические углеводороды.

Относительное содержание этих групп в нефтях весьма различно. Преобладание той или иной группы углеводорода придают нефтям различные свойства и от этого будет зависеть метод переработки и область применения нефтепродуктов.

Парафиновые углеводороды.

Самым низшим является метан. От метана до бутана эти углеводороды газообразны. В нефтях они находятся в растворенном состоянии и являются основной частью природного газа.

Природный газ добывают из газовой скважины, а попутный из нефтяной, вместе с нефтью. Природные газы в основном состоят из метана (до 98%), остальное – это пропан, этан, бутан. Попутные нефтяные газы содержат кроме метана – бутана много производных от пропана и бутана, а так же тяжелые углеводороды. кроме того, в состав природных и попутных газов входит сероводород, азот, двуокись углерода и гелий. Газы, богатые тяжелыми углеводородами называются жирными. Из них получают газовый бензин. Газы, состоящие из метана и этана называются сухими и используются как промышленное и бытовое топливо.

Парафиновые углеводороды от гептана до гепсодекана находятся в жидком состоянии и входят в состав бензиновых, керосиновых и дизельных фракций.

парафиновые углеводороды от С 17 и выше при нормальных условиях находятся в твердом состоянии.

Непредельные углеводороды (олифиновые).

В нефтях они встречаются очень редко, а появляются в процессе диструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью, поэтому они легко полимерезуюься, осмоляются, уменьшая срок хранения нефтепродуктов. они нежелательны в нефтепродуктах. Многие непредельные углеводороды, такие как: ацетилен, этилен, пропилен, бутилен – получили широкое применение в производстве каучука, пластмасс, полиэтилена, полипропилена.

Нафтеновые углеводороды.

они являются важнейшей частью моторных топлив и нефтяных масел, предавая им высокие эксплуатационные свойства. Их применяют для получения бензола, толуола, ксилола. Циклогексан применяется для получения нейлона.

Ароматические углеводороды.

В состав нефтей входят ароматические углеводороды с числом циклов от 1 до 4. Распределение их по фракциям различно. Они обладают наибольшей плотностью и являются ценным компонентом бензина, но снижают качество реактивных и дизельных топлив, так как ухудшают характеристики их сгорания. По сравнению с другими группами углеводородов они обладают высокой растворяющей способностью к органическим веществам, они токсичны. Применяются как компоненты нефтепродуктов при производстве взрывчатых веществ в качестве сырья для нефтехимического синтеза.

НЕУГЛЕРОДОВОДОРОДНЫЕ СОЕДИНЕНИЯ НЕФТИ.

Сернистые соединения.

Сера встречается во всех нефтях. Наименьшее содержание серы озоксуатской нефти (0,1%) и наибольшее в американских нефтях (до 6%). С повышением содержания серы в нефтях возрастает плотность, коксуемость, содержание смол и асфальтенов. Распределение серы по фракциям зависит от природы нефти и типа сернистых соединений. Обычно содержание серы увеличивается от низкокипящих фракций к высококипящим (в остатках). Различают три группы сернистых соединений. К первой относятся сероводород и меркаптаны, обладающие кислотными свойствами (коррозионностью). Ко второй относятся сульфиды и дисульфиды. При температуре от 130 0 до 160 0 С они распадаются на сероводород и меркаптаны. К третьей группе относятся тиофаны и тиофены. Сернистые соединения снижают химическую стабильность топлив, предают неприятный запах и вызывают коррозию двигателей. Основное количество серы содержится в виде производных тиофанов и тиофенов.

Нефть результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органического вещества (керогена) в водно осадочных отложениях в бескислородных условиях.… … Википедия

Российская Советская Федеративная Социалистическая Республика - РСФСР. I. Общие сведения РСФСР образована 25 октября (7 ноября) 1917. Граничит на С. З. с Норвегией и Финляндией, на З. с Польшей, на Ю. В. с Китаем, МНР и КНДР, а также с союзными республиками, входящими в состав СССР: на З. с… …

Нефтехимия - У этого термина существуют и другие значения, см. Нефтехимия (значения). Понятие нефтехимии охватывает несколько взаимосвязанных значений: раздел химии, изучающий химизм превращений углеводородов нефти и природного газа в полезные продукты и… … Википедия

Медицина - I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

Порошковое пожаротушение - Порошковый огнетушитель Порошковое пожаротушение тушение пожара огнетушащим порошковым составом. В ряде случаев порошки являются единственным огнетушащим веществом, пригодным для тушени … Википедия

Плутоний - 94 Нептуний ← Плутоний → Америций Sm Pu … Википедия

Химические свойства спиртов - Химические свойства спиртов это химические реакции спиртов во взаимодействии с другими веществами. Они определяются в основном наличием гидроксильной группы и строением углеводородной цепи, а также их взаимным влиянием: Чем больше… … Википедия

Венгрия - (Magyarország) Венгерская Народная Республика, ВНР (Magyar Népköztársaság). I Общие сведения В. государство в Центральной Европе, в центральной части бассейна Дуная. Граничит на С. с Чехословакией, на З. с Австрией, на Ю. с… … Большая советская энциклопедия

Уран (элемент) - У этого термина существуют и другие значения, см. Уран. 92 Протактиний ← Уран → Нептуний … Википедия

Органическая геохимия - изучает химический и изотопный состав органических веществ, заключенных в горных породах (в виде ископаемых остатков и т.д.), их эволюцию в ходе геологической истории, закономерности распределения, а также роль органического вещества в процессах… … Википедия

Таджикская Советская Социалистическая Республика - (Республикаи Советии Социалистии Тоджикистон) Таджикистан. I. Общие сведения Таджикская АССР образована 14 октября 1924 в составе Узбекской ССР; 16 октября 1929 преобразована в Таджикскую ССР, 5 декабря 1929… … Большая советская энциклопедия

Введение

1. ПРОИСХОЖДЕНИЕ НЕФТИ

1.1. Гипотезы минерального происхождения

1.2. Развитие представлений об органическом происхождении нефти

1.3. Современные представления об образовании нефти игаза

1.4. Образование основных классов углеводородов нефти

2. ХИМИЧЕСКИЙ СОСТАВ НЕФТИ И ГАЗА

2.1. Углеводородные соединения

2.2. Гетероорганические соединения

2.3. Микроэлементы

3. НЕФТЯНЫЕ ДИСПЕРСНЫЕ СИСТЕМЫ

3.1. Парафиновые углеводороды

3.2. Нафтеновые углеводороды

3.3. Ароматические углеводороды

3.4. Смолисто-асфальтеновые вещества

4. физико-химические свойства нефти

4.1. Плотность нефти

4.2. Вязкость нефти

4.3. Реологические свойства нефтей

4.5. Давление насыщения нефти газом

4.6. Сжимаемость нефти

4.7. Объемный коэффициент нефти

4.8. Тепловые свойства нефтей

4.9. Электрические свойства нефтей

4.10. Молекулярная масса

4.11. Температура кристаллизации, помутнения, застывания

4.12. Температура вспышки, воспламенения и самовоспламенения

4.13. Оптические свойства

4.14. Различие свойств нефти в пределах нефтеносной залежи

5. СВОЙСТВА НЕФТЯНОГО ГАЗА

6. кЛАССИФИКАЦИИ НЕФТЕЙ

Введение

Нефть давно известна человечеству. Её использовали в Вавилоне и Византии как зажигательную смесь. В древнем Египте, Риме и междуречьи Тигра и Евфрата её применяли как вяжущий и гидроизоляционный материал при строительстве дорог, акведуков и других сооружений. С конца XVIII века продукт переработки нефти керосин стал использоваться для освещения жилищ и улиц, а с XIX века, с изобретением двигателей внутреннего сгорания нефтепродукты стали основным видом топлива для различных транспортных средств.

В отличие от других видов горючих ископаемых, нефть относительно легко добывается, транспортируется (по трубопроводам) и довольно просто перерабатывается в широкую гамму продуктов различного назначения. Поэтому неудивительно, что в большинстве стран мира на нефть приходится более половины топливно-энергетического комплекса.

Экономика государств зависит от нефти больше, чем от любого другого продукта. Поэтому нефть с начала ее промышленной добычи и до настоящего времени является предметом острой конкурентной борьбы, причиной многих международных конфликтов и войн. Природный газ, как и нефть, в первую очередь является энергетическим топливом. Большая часть добываемой в мире нефти (80 - 90 %) перерабатывается в различные виды топлива и смазочных материа­лов. Лишь около 10 % его идет на нужды химической промышленности.

История развития химии нефти связана с работами Д. И. Менделеева, Н. Д. Зелинского, В. В. Марковникова, К. В. Харичкова, В. Н. Ипатьева, А, А. Летнего и др., которые способствовали рождению химии нефти как науки. Становление ее произошло в конце 20-х - начале 30-х годов в стенах Московской горной акаде­мии, где профессор (позже академик) С. Н. Намёткин читал курс "Химия нефти". В 1932 г. вышла книга с таким же названием.

Основные, традиционные исследования в области химии нефти включают следующие направления. Первое - аналитическое направление, изучающее состав нефтей с целью практического применения нефтяных фракций и отдельных компонентов, а также решения геохимических задач по поиску новых месторождений нефти и газа. Знание потенциального химического состава нефти имеет определяющее значение для выбора оптимальной технологической схемы ее переработки. С помощью современных методов аналитической и органической химии в нефтях по данным Ал. А. Петрова было идентифицировано около 1000 индивидуальных соединений.

Второе направление исследований заключается в изучении свойств нефтяных систем в зависимости от Р, V, Т-условий и химического взаимодействия отдельных компонентов нефти. В условиях добычи, транспортировки, переработки и применения нефтяные системы могут находиться при повышенных температурах и давлениях, когда возможны химические превращения нефтяных компонентов.

Следует обратить внимание на то, что в химии нефти достаточно долго господствовал и сохранился до сих пор подход к нефтяным системам как к молекулярным растворам. До сих пор многие явления в нефтяных системах и техно­логические расчеты трактуются на основе физических законов, установленных для молекулярных растворов (законов Рауля-Дальтона, Генри, Ньютона, Дарси и т.д.). Однако представления о молекулярной структуре нефтяных систем не всегда описывает реальное поведение нефтяных систем и соответствует действительности.

С позиций коллоидной химии – нефть это сложная многокомпонентная смесь, проявляющая в зависимости от совокупности внешних условий свойства молекулярного раствора или дисперсной системы. К нефтяным дисперсным системам (НДС) относятся практически все виды природного углеводородного сырья, а также разные типы нефтепродуктов - от моторных топлив до коксов. Такой подход, основанный на рассмотрении дисперсной структуры различных НДС, позволяет оптимизировать без существенных материальных затрат те технологические процессы добычи, транспортировки и переработки нефти, а также свойства нефтепродуктов, которые не удавалось интенсифицировать другими способами.

Накопленный к настоящему времени экспериментальный материал убедительно доказывает, что дальнейшее игнорирование дисперсного строения нефти существенно ограничивает возможности по регулированию нефтеотдачи пласта. Конечно, нельзя не отметить исключительную сложность такого подхода. Она заключается в том, что специалисты в области химии нефти до сих пор не пришли к единому мнению о строении нефти, исследуя ее при нормальных условиях. А чаще всего контакт нефти с породой происходит при иных условиях: в присутствии внутрипластовой воды, в зоне повышенных температур и давлений.

При транспортировке в результате изменения внешних условий (например, температуры, давления, концентрации присадок) могут происходить многократные изменения макромолекулярной организации нефти вплоть до изменения агрегатного состояния, что, естественно, влияет на изменение ее гидродинамического со­противления при движении по трубе. Желательно снизить гидродинамическое сопротивление нефти, что обычно достигается с помощью полимерных присадок, однако в научном плане взаимодействия присадок с компонентами НДС еще не изучены.

При переработке нефти и применении нефтепродуктов происходят фазовые превращения с изменением как агрегатного состояния, так в ряде случаев и химического состава фаз. Регулирование фазовых переходов в НДС с помощью внешних фак­торов: силовых полей и добавок разнообразной природы, включая прием оптимального компаундирования нефтепродуктов, оказывается эффективным способом воздействия на параметры нефтетехнологических процессов и свойства нефтепродуктов. днако запасы нефти, к сожалению, ограничены, а разрабатываемые месторождения через некоторое время истощаются. Невозобновляемость и ограниченность ресурсов углеводородного сырья, которыми располагает человечество, усиливает остроту энергетической проблемы. По прогнозам производство сырой нефти достигнет пика во втором - третьем десятилетии будущего века, а дефицит запасов сопутствующих нефти природного газа и газоконденсатов начнет ощущаться уже с 2010 г.

Исчерпание нефтяных запасов ведет к необходимости более экономичного использования нефти путем увеличения коэффициента нефтеотдачи, оптимизации процессов транспортировки и увеличения глубины переработки нефти, рационального применения нефтепродуктов с учетом их экологических свойств, что невозможно без всесторонних физико-химических исследований состава, структуры и свойств нефти.

Сырья для производства природными объектами .

Гипотезы происхождения нефти

1) неорганическая

2) космическая

3) органическая

Автором одной из неорганических теорий является Д.И.Менделеев. Согласно этой теории первые органические соединения образовались в результате взаимодействия карбидов металлов, находящихся в ядре земли, с водой, проникшей к ним по трещинам:

СаС 2 + 2Н 2 О → Са(ОН) 2 + С 2 Н 2

Al 4 C 3 + 12Н 2 O → 4А1(ОН) 3 + 3СН 4

Под действием высоких температур углеводороды и вода испарялись, поднимались к наружным частям земли и конденсировались в хорошо проницаемых осадочных породах.

Согласно космической теории , нефть образовалась из углерода и водорода при формировании Земли. По мере понижения температуры планеты углеводороды поглощались ею и конденсировались в земной коре.

органическая теория - нефть является продуктом разложения растительных и животных остатков, отлагающихся первоначально в виде морского ила. Основным органическим материалом для нефти служат растительные и животные микроорганизмы, развивающиеся в гидросфере. Отмершие остатки таких организмов скапливаются на дне заливов. Одновременно в море сносятся различные минеральные вещества. В конечном итоге органический материал собирается на дне водоема и постепенно погружается все глубже и глубже. Верхний слой такого ила называется пелоген , а частично превращенный ил в большей своей толще - сапропел . По современным представлениям, органическое вещество, захороненное в морском иле, и является материнским веществом нефти. К так называемым сапропелитовым каустобиолитам относятся также сланцы, сапропелитовые угли и т.д.



Торф, бурый уголь, каменный уголь, антрацит - гумусовые каустобиолиты (гумус-остатки наземной растительности).

Разложение погибших растительных и животных организмов в морских илах под воздействием О 2 и бактерий приводит к образованию: 1) жидких и газообразных продуктов; 2) осадков, устойчивых к химическому и бактерицидному воздействию. Эти осадки постепенно накапливаются в осадочных слоях. По своей химической природе они представляют собой смесь продуктов превращения белков. Дальнейшие превращения этого исходного органического материала в нефть происходит уже в отсутствии О 2 .

Состав нефтей, физико-химические характеристики и классификация нефтей

Элементный состав нефти

Основными элементами, входящими в состав нефти, являются С и Н.

Нефть состоит в основном из смеси метановых (алкановых), нафтеновых (циклоалкановых) и ароматических углеводородов. Кроме этого в нефтях присутствуют кислородные, сернистые и азотистые соединения.

К кислородным соединениям - нафтеновые кислоты, фенолы, асфальто-смолистые вещества. Сернистые соединения – это H 2 S, меркаптаны, сульфиды, тиофены, тиофаны, азотистые соединения – гомологи пиридина, гидропиридина и гидрохинолина. Компонентами нефти являются также растворенные в ней газы, вода и минеральные соли.

Состав минеральных компонентов определяется в золе, получаемой при сжигании нефти. В золе обнаружено до 20 различных элементов (Са, Fe, Si, Zn, Сu, Al, Mo, Ni, V, Na, Sn, Ti, Mn, Sr, Pb, Co, Ag, Ba, Cr и др В тяжелой части нефти содержатся смолисто-асфальтеновые вещества. Это сложная смесь наиболее высокомолекулярных соединений, представляющих собой гетероорганические соединения со сложной гибридной структурой, включающей серу, кислород, азот и некоторые металлы. Наиболее богаты смолисто-асфальтеновыми веществами молодые нефти с высоким содержанием ароматических соединений.



Классификация нефтей

1. Химическая классификация (преимущественное содержание одно или нескольких классов углеводородов)

Парафиновые

Нафтеновые

Ароматические.

классификация нефтей довольно условна, поскольку углеводородный состав даже нефти одного месторождения меняется при переходе от одного горизонта залегания к другому.

2.Технологическая классификация учитывает плотность нефтей, массовое содержание светлых фракций, массовое содержание серы, смолисто-асфальтеновых соединений, твердых парафинов.

По плотности различают нефти: легкие с плотностью до 0,84 г/см 3 , средние - 0,84-0,88 г/см 3 и тяжелые - 0,88-0,92 г/см 3 и выше.

асфальтено-смолистых веществ.

Рациональная переработка нефти и нефтепродуктов играет важную роль в современной экономике.

Бензин. Требования к нему и методы повышения качества.

Бензи́н - горючая смесь лёгких углеводородов с температурой кипения от 30 до 200 °C. Плотность около 0,75 г/см³. Теплотворная способность примерно 10500 ккал/кг (46 МДж/кг, 34,5 МДж/литр). Температура замерзания ниже -60 °C.

Бензин получают путем разгонки и отбора фракций нефти, выкипающих в определенных температурных пределах; до 100 °C - бензин I сорта, до 110 °C - бензин специальный, до 130 °C - бензин II сорта, до 265 °C - керосин («метеор»), до 270 °C - керосин обыкновенный, примерно до 300 °C - производится отбор масляных фракций. Остаток считается мазутом.

Повысить качество автомобильных бензинов можно за счет следующих мероприятий:

Отказа от применения в составе бензинов соединений свинца;

Нормирования концентрации фактических смол в бензинах на месте применения на уровне не более 5 мг на 100 см³;

Деления бензинов по фракционному составу и давлению насыщенных паров на 8 классов с учетом сезона эксплуатации автомобилей и температуры окружающей среды, характерной для конкретной климатической зоны.

Наличие классов позволяет выпускать бензин со свойствами, оптимальными для реальных температур окружающего воздуха, что обеспечивает работу двигателей без образования паровых пробок при температурах воздуха до +60 °С, а также гарантирует высокую испаряемость бензинов и легкий пуск двигателя при температурах ниже -35 °С;

Введения моющих присадок, не допускающих загрязнения и осмоления деталей топливной аппаратуры.

Требования, предъявляемые к качеству топлива

1.Высокие энергетические и термодинамические характеристики продуктов сгорания. При горении бензина должно выделяться максимальное количество тепла, продукты сгорания должны иметь малую молекулярную массу, небольшие теплоёмкость и теплопроводность, высокое значение произведения удельной газовой постоянной на температуру горения (RT).

2.Хорошая прокачиваемость. Бензины должны надёжно прокачиваться по топливной системе машин, трубопроводам, насосам, системам регулирования и другим агрегатам и коммуникациям при любых условиях окружающей среды – низкой и высокой температурах, различных давлениях, запылённости и влажности.

3.Оптимальная испаряемость. В условиях хранения и транспортирования испарение должно быть минимальным. При применении в двигателе бензина должны иметь такую испаряемость, чтобы обеспечить надёжное воспламенение и горение топлива с оптимальной скоростью в камерах сгорания двигателей.

4.Минимальная коррозионная активность. Топлива не должны содержать компоненты, которые разрушают конструкционные материалы двигателя, средства хранения и транспортирования.

5. Высокая стабильность в условиях хранения и применения. Топлива в течение длительного времени не должны изменять физико-химические и эксплуатационные свойства.

6.Нетоксичность. Продукты сгорания также должны быть нетоксичными.

Основными показателями бензина являются детонационная стойкость, давление насыщенных паров, фракционный состав, химическая стабильность и др.

октановое число – условный показатель, характеризующий стойкость бензинов к детонации и численно соответствующий детонационной стойкости модельной смеси изооктана и н-гептана.

Дизельное топливо и керосин. Требования к ним и способы повышения качества.

Дизельное топливо является сложной смесью парафиновых (10-40%), нафтеновых(20-60%) и ароматических (14-30%) углеводородов и их производных средней молекулярной массы 110-230, выкипающих в пределах 170-380 градусов по Цельсию. Температура вспышки составляет 35-80 градусов по Цельсию, застывания – ниже 5 градусов.

Для того чтобы обеспечить надежную, экономичную и долговечную работу дизельного двигателя, топливо для него должно отвечать следующим требованиям:

· хороший распыл топлива и оптимальное смесеобразование;

· полное сгорание топлива с малой задержкой самовоспламенения и минимальным образованием сажистых и токсичных веществ (оксида азота NOx, оксидов серы SO2, SОз, сероводорода H2S, бенз-а-пирена С20Н12) и др.;

· хорошая прокачиваемость топлива для обеспечения надежной и бесперебойной работы топливной аппаратуры;

· низкое нагарообразование в камере сгорания;

· отсутствие коррозии топливопроводов и деталей топливной аппаратуры;

· достаточная стабильность свойств при длительном хранении.

Химические свойства.

1.Реакции присоединения с раскрытием кольца и образованием ациклических (линейных) продуктов:

2. Дегидрирование (реакция Зелинского):

3.Реакция свободнорадикального замещения в цикле :

4. Окисление (образуются двухосновные карбоновые кислоты)

Ароматические углеводороды – это непредельные углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей. Общая формула C n H 2 n -6 Молекулы находятся в sp 2 – гибридизации. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).

Физические свойства

Агрегатное состояние - жидкость с различными температурами кипения. Конденсированные полициклические арены - твердые вещества с различными температурами плавления.

Химические свойства

Из-за повышенной устойчивости ароматической системы, несмотря на ненасыщенность, склонна к реакциям замещения, а не присоединения.

1. Реакции электрофильного замещения в кольце .

Нитрование

Сульфирование бензола с получением сульфокислоты:

галогенирование

2. Присоединения.

3. Окисление.

Алкены - ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n. Атомы углерода при двойной связи находятся в состоянии sp² гибридизации.

Физические свойства.

Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.

При нормальных условиях алкены с C2H4 до C4H8 - газы; с C5H10 до C17H34 - жидкости, после C18H36 - твёрдые тела. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Химические свойства

1 Гидрирование.

2. Галогенирование.

3. Гидратация.

4. Алкилтрование.

Гидрогалогенирование, гидратация и сульфирование протекают по правилу Марковникова , по которому в реакциях присоединения полярных молекул (галогенводородов, воды, серной кислоты и др.) к несимметричным алкенам атом водорода присоединяется к наиболее гидрогенизированному атому углерода двойной связи:

Ароматические соединения

Ароматические соединения - циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.

Получение

1.Каталитическая дегидроциклизация алканов, то есть отщепление водорода с одновременной циклизацией. Реакция осуществляется при повышенной температуре с использованием катализатора, например оксида хрома.

2.Каталитическое дегидрирование циклогексана и его производных. В качестве катализатора используется палладиевая чернь или платина при 300 °C. (Н. Д. Зелинский)

3.Циклическая тримеризация ацетилена и его гомологов над активированным углем при 600 °C. (Н. Д. Зелинский)

4.Алкилирование бензола галогенопроизводными или олефинами. (Реакция Фриделя - Крафтса)

Осн. источником получения ароматических углеводородов служат продукты коксования кам. угля. Большое значение имеет производство ароматических углеводородов из нефтяных углеводородов жирного ряда.

Ароматизация нефтепродуктов, химическая переработка нефтяных продуктов с целью увеличения содержания в них ароматических углеводородов путём превращения углеводородов с открытой цепью в углеводороды циклического строения. Ароматизация нефтепродуктов происходит в различных процессах переработки нефти и её фракций - крекинге, каталитаx. риформинге, гидрогенизации деструктивной, пиролизе. Для промышленного получения ароматических углеводородов применяют главным образом каталитический риформинг бензино-лигроиновых фракций нефти. Получаемый продукт, содержащий до 60% ароматических углеводородов, используют как высокооктановый компонент моторного топлива или для получения чистых ароматических углеводородов.

Этим путём получают 80-90% лёгких ароматических углеводородов, используемых для производства взрывчатых веществ, красителей, моющих средств, пластических масс и др.

Для некоторых ароматических углеводородов имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу:

Полипропилен. Получение

Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов.

nCH2=CH(CH3) → [-CH2-CH(CH3)-]n

Параметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.

Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4-0,5 г/см³. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.

По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический.

В отличие от полиэтилена, полипропилен менее плотный, более твёрдый (стоек к истиранию), более термостойкий, почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду.

Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.

Полиэтилен - термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы …-CH2-CH2-CH2-CH2-…,

Представляет собой воскообразную массу белого цвета. Химически- и морозостоек, изолятор, не чувствителен к удару, при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия (прилипание) - чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном - похожим материалом растительного происхождения.

Общие свойства

Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора.

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. Со временем, деструктурирует с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Полиэтилен низкого давления (HDPE) применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.

Поливинилхлорид - бесцветная, прозрачная пластмасса, термопластичный полимер винилхлорида. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. Не горит на воздухе, но обладает малой морозостойкостью.

Растворяется в циклогексаноне, тетрагидрофуране, диметилформамиде (ДМФА), дихлорэтане, ограниченно - в бензоле, ацетоне. Не растворяется в воде, спиртах, углеводородах; стоек в растворах щелочей, кислот, солей.

Устойчив к действию влаги, кислот, щелочей, растворов солей, бензина, керосина, жиров, спиртов, обладает хорошими диэлектрическими свойствами.

Получается суспензионной или эмульсионной полимеризацией винилхлорида, а также полимеризацией в массе.

Применяется для электроизоляции проводов и кабелей, производства листов, труб, пленок, пленок для натяжных потолков, искусственных кож, поливинилхлоридного волокна, пенополивинилхлорида, линолеума, обувных пластикатов, мебельной кромки и т. д. Также применяется для производства грампластинок, профилей для изготовления окон и дверей.

Поливинилхлорид также часто используется в одежде и аксессуарах для создания подобного коже материала, отличающегося гладкостью и блеском. Поливинилхлорид используют как уплотнитель в бытовых холодильниках, вместо относительно сложных механических затворов. Это дало возможность применить магнитные затворы в виде намагниченных эластичных вставок, помещаемых в баллоне уплотнителя.

Синтетические каучуки - синтетические полимеры, способные перерабатываться в резину путем вулканизации, составляют основную массу эластомеров. Синтетический каучук - высокополимерный, каучукоподобный материал. Его получают полимеризацией или сополимеризацией бутадиена, стирола, изопрена, неопрена, хлорпрена, изобутилена, нитрила акриловой кислоты. Подобно натуральным каучукам, синтетические имеют длинные макромолекулярные цепи, иногда разветвленные, со средним молекулярным весом, равным сотням тысяч и даже миллионам. Полимерные цепи в синтетическом каучуке в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, получаемая при этом резина, приобретает характерные физико-механические свойства.

Часть синтетических каучуков выпускают в виде водных дисперсий - синтетических латексов. Особую группу каучуков составляют - термоэластопласты.

Некоторые виды синтетических каучуков представляют собой полностью предельные соединения, поэтому для их вулканизации применяют органические перекиси, амины и др. вещества. Отдельные виды синтетических каучуков по ряду технических свойств превосходят натуральный каучук. По области применения синтетические каучуки разделяют на каучуки общего и специального назначения. К каучукам общего назначения относят каучуки с комплексом достаточно высоких технических свойств, пригодных для массового изготовления широкого круга изделий. К каучукам специального назначения относят каучуки с одним или несколькими свойствами, обеспечивающими выполнение специальных требований к изделию и иго работоспособности в часто экстремальных условиях эксплуатации.

Каучуки общего назначения: изопреновые, бутадиеновые, бутадиенстирольные и др.

Каучуки специального назначения: бутилкаучук, этиленпропиленовые, хлорпреновые, фторкаучуки, уретановые и др.

В технике из каучуков изготовляют шины для автотранспорта, самолётов, велосипедов; каучуки применяют для электроизоляции, а также производства промышленных товаров и медицинских приборов.

Предмет химии нефти и газа. Нефть и газ как природные объекты, источники энергии и сырье для переработки. Происхождение нефти.

Природные источники углеводородов являются основой промышленности органического синтеза, задачей которой является получение необходимых человеку веществ, в том числе и не встречающихся в природе.

Основными источниками сырья для промышленности органического синтеза являются природный газ, попутные нефтяные газы, нефть.

Нефть – сложная смесь углеводородов, в которой преобладают предельные углеводороды, в молекулах которых от 5-50 атомов C, а также циклоалканы и арены, и органических соединений серы, азота и кислорода.

Сырья для производства нефтехимической, строительной и других отраслей промышленности. В этом отношении нефть и газ являются на сегодняшний день незаменимыми природными объектами .


Top