Что такое обратная матрица. Алгоритм вычисления обратной матрицы с помощью алгебраических дополнений: метод присоединённой (союзной) матрицы

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .

Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .

Размерность матрицы 2 3 4 5 6 7 8 9 10

См. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Нахождение транспонированной матрицы A T .
  2. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  3. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица C .
  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы A . Если он не равен нулю, продолжаем решение, иначе - обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы C .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы C делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1 . Запишем матрицу в виде:


Алгебраические дополнения.
A 1,1 = (-1) 1+1
-1 -2
5 4

∆ 1,1 = (-1 4-5 (-2)) = 6
A 1,2 = (-1) 1+2
2 -2
-2 4

∆ 1,2 = -(2 4-(-2 (-2))) = -4
A 1,3 = (-1) 1+3
2 -1
-2 5

∆ 1,3 = (2 5-(-2 (-1))) = 8
A 2,1 = (-1) 2+1
2 3
5 4

∆ 2,1 = -(2 4-5 3) = 7
A 2,2 = (-1) 2+2
-1 3
-2 4

∆ 2,2 = (-1 4-(-2 3)) = 2
A 2,3 = (-1) 2+3
-1 2
-2 5

∆ 2,3 = -(-1 5-(-2 2)) = 1
A 3,1 = (-1) 3+1
2 3
-1 -2

∆ 3,1 = (2 (-2)-(-1 3)) = -1
A 3,2 = (-1) 3+2
-1 3
2 -2

∆ 3,2 = -(-1 (-2)-2 3) = 4
A 3,3 = (-1) 3+3
-1 2
2 -1

∆ 3,3 = (-1 (-1)-2 2) = -3
Тогда обратную матрицу можно записать как:
A -1 = 1 / 10
6 -4 8
7 2 1
-1 4 -3

A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.
  1. Находим определитель данной квадратной матрицы A .
  2. Находим алгебраические дополнения ко всем элементам матрицы A .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы A .
Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .

Рассмотрим проблему определения операции, обратной умножению матриц.

Пусть A - квадратная матрица порядка n . Матрица A^{-1} , удовлетворяющая вместе с заданной матрицей A равенствам:

A^{-1}\cdot A=A\cdot A^{-1}=E,


называется обратной . Матрицу A называют обратимой , если для нее существует обратная, в противном случае - необратимой .

Из определения следует, что если обратная матрица A^{-1} существует, то она квадратная того же порядка, что и A . Однако не для всякой квадратной матрицы существует обратная. Если определитель матрицы A равен нулю (\det{A}=0) , то для нее не существует обратной. В самом деле, применяя теорему об определителе произведения матриц для единичной матрицы E=A^{-1}A получаем противоречие

\det{E}=\det(A^{-1}\cdot A)=\det{A^{-1}}\det{A}=\det{A^{-1}}\cdot0=0


так как определитель единичной матрицы равен 1. Оказывается, что отличие от нуля определителя квадратной матрицы является единственным условием существования обратной матрицы. Напомним, что квадратную матрицу, определитель которой равен нулю, называют вырожденной {особой), в противном случае - невырожденной {неособой).

Теорема 4.1 о существовании и единственности обратной матрицы. Квадратная матрица A=\begin{pmatrix}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \end{pmatrix} , определитель которой отличен от нуля, имеет обратную матрицу и притом только одну:

A^{-1}=\frac{1}{\det{A}}\cdot\! \begin{pmatrix}A_{11}&A_{21}&\cdots&A_{1n}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn} \end{pmatrix}= \frac{1}{\det{A}}\cdot A^{+},

где A^{+} - матрица, транспонированная для матрицы, составленной из алгебраических дополнений элементов матрицы A .

Матрица A^{+} называется присоединенной матрицей по отношению к матрице A .

В самом деле, матрица \frac{1}{\det{A}}\,A^{+} существует при условии \det{A}\ne0 . Надо показать, что она обратная к A , т.е. удовлетворяет двум условиям:

\begin{aligned}\mathsf{1)}&~A\cdot\!\left(\frac{1}{\det{A}}\cdot A^{+}\right)=E;\\ \mathsf{2)}&~ \!\left(\frac{1}{\det{A}}\cdot A^{+}\right)\!\cdot A=E.\end{aligned}

Докажем первое равенство. Согласно п.4 замечаний 2.3, из свойств определителя следует, что AA^{+}=\det{A}\cdot E . Поэтому

A\cdot\!\left(\frac{1}{\det{A}}\cdot A^{+}\right)= \frac{1}{\det{A}}\cdot AA^{+}= \frac{1}{\det{A}}\cdot \det{A}\cdot E=E,

что и требовалось показать. Аналогично доказывается второе равенство. Следовательно, при условии \det{A}\ne0 матрица A имеет обратную

A^{-1}=\frac{1}{\det{A}}\cdot A^{+}.

Единственность обратной матрицы докажем от противного. Пусть кроме матрицы A^{-1} существует еще одна обратная матрица B\,(B\ne A^{-1}) такая, что AB=E . Умножая обе части этого равенства слева на матрицу A^{-1} , получаем \underbrace{A^{-1}AB}_{E}=A^{-1}E . Отсюда B=A^{-1} , что противоречит предположению B\ne A^{-1} . Следовательно, обратная матрица единственная.

Замечания 4.1

1. Из определения следует, что матрицы A и A^{-1} перестановочны.

2. Матрица, обратная к невырожденной диагональной, является тоже диагональной:

\Bigl[\operatorname{diag}(a_{11},a_{22},\ldots,a_{nn})\Bigr]^{-1}= \operatorname{diag}\!\left(\frac{1}{a_{11}},\,\frac{1}{a_{22}},\,\ldots,\,\frac{1}{a_{nn}}\right)\!.

3. Матрица, обратная к невырожденной нижней (верхней) треугольной, является нижней (верхней) треугольной.

4. Элементарные матрицы имеют обратные, которые также являются элементарными (см. п.1 замечаний 1.11).

Свойства обратной матрицы

Операция обращения матрицы обладает следующими свойствами:

\begin{aligned}\bold{1.}&~~ (A^{-1})^{-1}=A\,;\\ \bold{2.}&~~ (AB)^{-1}=B^{-1}A^{-1}\,;\\ \bold{3.}&~~ (A^T)^{-1}=(A^{-1})^T\,;\\ \bold{4.}&~~ \det{A^{-1}}=\frac{1}{\det{A}}\,;\\ \bold{5.}&~~ E^{-1}=E\,. \end{aligned}


если имеют смысл операции, указанные в равенствах 1-4.

Докажем свойство 2: если произведение AB невырожденных квадратных матриц одного и того же порядка имеет обратную матрицу, то (AB)^{-1}=B^{-1}A^{-1} .

Действительно, определитель произведения матриц AB не равен нулю, так как

\det(A\cdot B)=\det{A}\cdot\det{B} , где \det{A}\ne0,~\det{B}\ne0

Следовательно, обратная матрица (AB)^{-1} существует и единственна. Покажем по определению, что матрица B^{-1}A^{-1} является обратной по отношению к матрице AB . Действительно.

Определение 1: матрица называется вырожденной, если её определитель равен нулю.

Определение 2: матрица называется невырожденной, если её определитель не равен нулю.

Матрица "A" называется обратной матрицей , если выполняется условие A*A-1 = A-1 *A = E (единичной матрице).

Квадратная матрица обратима только в том случае, когда она является невырожденной.

Схема вычисления обратной матрицы:

1) Вычислить определитель матрицы "A", если A = 0, то обратной матрицы не существует.

2) Найти все алгебраические дополнения матрицы "A".

3) Составить матрицу из алгебраических дополнений (Aij )

4) Транспонировать матрицу из алгебраических дополнений (Aij )T

5) Умножить транспонированную матрицу на число, обратное определителю данной матрицы.

6) Выполнить проверку:

На первый взгляд может показаться, что это сложно, но на самом деле всё очень просто. Все решения основаны на простых арифметических действиях, главное при решении не путаться со знаками "-" и "+", и не терять их.

А теперь давайте вместе с Вами решим практическое задание, вычислив обратную матрицу.

Задание: найти обратную матрицу "A", представленную на картинке ниже:

Решаем всё в точности так, как это указано в план-схеме вычисления обратной матрицы.

1. Первое, что нужно сделать, это найти определитель матрицы "A":

Пояснение:

Мы упростили наш определитель, воспользовавшись его основными функциями. Во первых, мы прибавили ко 2 и 3 строке элементы первой строки, умноженные на одно число.

Во-вторых, мы поменяли 2 и 3 столбец определителя, и по его свойствам поменяли знак перед ним.

В-третьих, мы вынесли общий множитель (-1) второй строки, тем самым, снова поменяв знак, и он стал положительным. Также мы упростили 3 строку также, как в самом начале примера.

У нас получилась треугольный определитель, у которого элементы ниже диагонали равны нулю, и по 7 свойству он равен произведению элементов диагонали. В итоге мы получили A = 26, следовательно обратная матрица существует.

А11 = 1*(3+1) = 4

А12 = -1*(9+2) = -11

А13 = 1*1 = 1

А21 = -1*(-6) = 6

А22 = 1*(3-0) = 3

А23 = -1*(1+4) = -5

А31 = 1*2 = 2

А32 = -1*(-1) = -1

А33 = 1+(1+6) = 7

3. Следующий шаг - составление матрицы из получившихся дополнений:

5. Умножаем эту матрицу на число, обратное определителю, то есть на 1/26:

6. Ну а теперь нам просто нужно выполнить проверку:

В ходе проверки мы получили единичную матрицу, следовательно, решение было выполнено абсолютно верно.

2 способ вычисления обратной матрицы.

1. Элементарное преобразование матриц

2. Обратная матрица через элементарный преобразователь.

Элементарное преобразование матриц включает:

1. Умножение строки на число, не равное нулю.

2. Прибавление к любой строке другой строки, умноженной на число.

3. Перемена местами строк матрицы.

4. Применяя цепочку элементарных преобразований, получаем другую матрицу.

А-1 = ?

1. (A|E) ~ (E|A-1 )

2. A-1 * A = E

Рассмотрим это на практическом примере с действительными числами.

Задание: Найти обратную матрицу.

Решение:

Выполним проверку:

Небольшое разъяснение по решению:

Сперва мы переставили 1 и 2 строку матрицы, затем умножили первую строку на (-1).

После этого умножили первую строку на (-2) и сложили со второй строкой матрицы. После чего умножили 2 строку на 1/4.

Заключительным этапом преобразований стало умножение второй строки на 2 и прибавлением с первой. В результате слева у нас получилась единичная матрица, следовательно, обратная матрица - это матрица справа.

После проверки мы убедились в правильности решения.

Как вы видите, вычисление обратной матрицы - это очень просто.

В заключении данной лекции хотелось бы также уделить немного времени свойствам такой матрицы.

В первой части был рассмотрен способ нахождения обратной матрицы с помощью алгебраических дополнений. Здесь же мы опишем иной метод нахождения обратных матриц: с использованием преобразований метода Гаусса и Гаусса-Жордана. Зачастую этот метод нахождения обратной матрицы именуют методом элементарных преобразований.

Метод элементарных преобразований

Для применения этого метода в одну матрицу записывают заданную матрицу $A$ и единичную матрицу $E$, т.е. составляют матрицу вида $(A|E)$ (эту матрицу называют также расширенной). После этого с помощью элементарных преобразований, выполняемых со строками расширенной матрицы, добиваются того, что матрица слева от черты станет единичной, причём расширенная матрица примет вид $\left(E| A^{-1} \right)$. К элементарным преобразованиям в данной ситуации относят такие действия:

  1. Смена мест двух строк.
  2. Умножение всех элементов строки на некоторое число, не равное нулю.
  3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

Применять указанные элементарные преобразования можно разными путями. Обычно выбирают метод Гаусса или метод Гаусса-Жордана. Вообще, методы Гаусса и Гаусса-Жордана предназначены для решения систем линейных алгебраических уравнений, а не для нахождения обратных матриц. Фразу «применение метода Гаусса для нахождения обратной матрицы» здесь нужно понимать как «применение операций, свойственных методу Гаусса, для нахождения обратной матрицы».

Нумерация примеров продолжена с первой части . В примерах и рассмотрено применение метода Гаусса для нахождения обратной матрицы, а в примерах и разобрано использование метода Гаусса-Жордана. Следует отметить, что если в ходе решения все элементы некоторой строки или столбца матрицы, расположенной до черты, обнулились, то обратной матрицы не существует.

Пример №5

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 7 & 4 & 6 \\ 2 & 5 & -4 \\ 1 & -1 & 3 \end{array} \right)$.

В этом примере будет найдена обратная матрица методом Гаусса. Расширенная матрица, имеющая в общем случае вид $(A|E)$, в данном примере примет такую форму: $ \left(\begin{array} {ccc|ccc} 7 & 4 & 6 & 1 & 0 & 0 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 1 & -1 & 3 & 0 & 0 & 1 \end{array} \right)$.

Цель: с помощью элементарных преобразований привести расширенную матрицу к виду $\left(E|A^{-1} \right)$. Применим те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Для применения метода Гаусса удобно, когда первым элементом первой строки расширенной матрицы является единица. Чтобы добиться этого, поменяем местами первую и третью строки расширенной матрицы, которая станет такой: $ \left(\begin{array} {ccc|ccc} 1 & -1 & 3 & 0 & 0 & 1 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 7 & 4 & 6 & 1 & 0 & 0 \end{array} \right)$.

Теперь приступим к решению. Метод Гаусса делится на два этапа: прямой ход и обратный (подробное описание этого метода для решения систем уравнений дано в примерах соответствующей темы). Те же два этапа будут применены и в процессе отыскания обратной матрицы.

Прямой ход

Первый шаг

С помощью первой строки обнуляем элементы первого столбца, расположенные под первой строкой:

Немного прокомментирую выполненное действие. Запись $II-2\cdot I$ означает, что от элементов второй строки вычли соответствующие элементы первой строки, предварительно умноженные на два. Это действие можно записать отдельно следующим образом:

Точно так же выполняется и действие $III-7\cdot I$. Если возникают сложности с выполнением этих операций, их можно выполнить отдельно (аналогично показанному выше действию $II-2\cdot I$), а результат потом внести в расширенную матрицу.

Второй шаг

С помощью второй строки обнуляем элемент второго столбца, расположенный под второй строкой:

Разделим третью строку на 5:

Прямой ход окончен. Все элементы, расположенные под главной диагональю матрицы до черты, обнулились.

Обратный ход

Первый шаг

С помощью третьей строки обнуляем элементы третьего столбца, расположенные над третьей строкой:

Перед переходом к следующему шагу разделим вторую строку на $7$:

Второй шаг

С помощью второй строки обнуляем элементы второго столбца, расположенные над второй строкой:

Преобразования закончены, обратная матрица методом Гаусса найдена: $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$. Проверку, при необходимости, можно сделать так же, как и в предыдущих примерах. Если пропустить все пояснения, то решение примет вид:

Ответ : $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$.

Пример №6

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {cccc} -5 & 4 & 1 & 0 \\ 2 & 3 & -2 & 1 \\ 0 & 7 & -4 & -3 \\ 1 & 4 & 0 & 6 \end{array} \right)$.

Для нахождения обратной матрицы в этом примере будем использовать те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Подробные пояснения даны в , здесь же ограничимся краткими комментариями. Запишем расширенную матрицу: $\left(\begin{array} {cccc|cccc} -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \end{array} \right)$. Поменяем местами первую и четвёртую строки данной матрицы: $\left(\begin{array} {cccc|cccc} 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \end{array} \right)$.

Прямой ход

Преобразования прямого хода завершены. Все элементы, расположенные под главной диагональю матрицы слева от черты, обнулились.

Обратный ход

Обратная матрица методом Гаусса найдена, $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$. Проверку, при необходимости, проводим так же, как и в примерах №2 и №3.

Ответ : $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$.

Пример №7

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 2 & 3 & 4 \\ 7 & 1 & 9 \\ -4 & 5 & -2 \end{array} \right)$.

Для нахождения обратной матрицы применим операции, характерные методу Гаусса-Жордана. Отличие от метода Гаусса, рассмотренного в предыдущих примерах и , состоит в том, что решение осуществляется в один этап. Напомню, что метод Гаусса делится на 2 этапа: прямой ход («делаем» нули под главной диагональю матрицы до черты) и обратный ход (обнуляем элементы над главной диагональю матрицы до черты). Для вычисления обратной матрицы методом Гаусса-Жордана двух стадий решения не потребуется. Для начала составим расширенную матрицу: $(A|E)$:

$$ (A|E)=\left(\begin{array} {ccc|ccc} 2 & 3 & 4 & 1 & 0 & 0\\ 7 & 1 & 9 & 0 & 1 & 0\\ -4 & 5 & -2 &0 & 0 & 1 \end{array} \right) $$

Первый шаг

Обнулим все элементы первого столбца кроме одного. В первом столбце все элементы отличны от нуля, посему можем выбрать любой элемент. Возьмём, к примеру, $(-4)$:

Выбранный элемент $(-4)$ находится в третьей строке, посему именно третью строку мы используем для обнуления выделенных элементов первого столбца:

Сделаем так, чтобы первый элемент третьей строки стал равен единице. Для этого разделим элементы третьей строки расширенной матрицы на $(-4)$:

Теперь приступим к обнулению соответствующих элементов первого столбца:

В дальнейших шагах использовать третью строку уже будет нельзя, ибо мы её уже применили на первом шаге.

Второй шаг

Выберем некий не равный нулю элемент второго столбца и обнулим все остальные элементы второго столбца. Мы можем выбрать любой из двух элементов: $\frac{11}{2}$ или $\frac{39}{4}$. Элемент $\left(-\frac{5}{4} \right)$ выбрать нельзя, ибо он расположен в третьей строке, которую мы использовали на предыдущем шаге. Выберем элемент $\frac{11}{2}$, который находится в первой строке. Сделаем так, чтобы вместо $\frac{11}{2}$ в первой строке стала единица:

Теперь обнулим соответствующие элементы второго столбца:

В дальнейших рассуждениях первую строку использовать нельзя.

Третий шаг

Нужно обнулить все элементы третьего столбца кроме одного. Нам надо выбрать некий отличный от нуля элемент третьего столбца. Однако мы не можем взять $\frac{6}{11}$ или $\frac{13}{11}$, ибо эти элементы расположены в первой и третьей строках, которые мы использовали ранее. Выбор невелик: остаётся лишь элемент $\frac{2}{11}$, который находится во второй строке. Разделим все элементы второй строки на $\frac{2}{11}$:

Теперь обнулим соответствующие элементы третьего столбца:

Преобразования по методу Гаусса-Жордана закончены. Осталось лишь сделать так, чтобы матрица до черты стала единичной. Для этого придется менять порядок строк. Для начала поменяем местами первую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \end{array} \right) $$

Теперь поменяем местами вторую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \end{array} \right) $$

Итак, $A^{-1}=\left(\begin{array} {ccc} 47/4 & -13/2 & -23/4 \\ 11/2 & -3 & -5/2 \\ -39/4 & 11/2 & 19/4 \end{array} \right)$. Естественно, что решение можно провести и по-иному, выбирая элементы, стоящие на главной диагонали. Обычно именно так и поступают, ибо в таком случае в конце решения не придется менять местами строки. Я привел предыдущее решение лишь с одной целью: показать, что выбор строки на каждом шаге не принципиален. Если выбирать на каждом шаге диагональные элементы, то решение станет таким.

Матричная алгебра - Обратная матрица

Обратная матрица

Обратной матрицей называется матрица, которая при умножении как справа, так и слева на данную матрицу дает единичную матрицу.
Обозначим обратную матрицу к матрице А через , тогда согласно определению получим:

где Е – единичная матрица.
Квадратная матрица называется неособенной (невырожденной ), если ее определитель не равен нулю. В противном случае она называется особенной (вырожденной ) или сингулярной .

Имеет место теорема: всякая неособенная матрица имеет обратную матрицу.

Операция нахождения обратной матрицы называется обращением матрицы. Рассмотрим алгоритм обращения матрицы. Пусть дана неособенная матрица n -го порядка:

где Δ = det A ≠ 0.

Алгебраическим дополнением элемента матрицы n -го порядка А называется взятый с определенным знаком определитель матрицы (n –1)-го порядка, полученной вычеркиванием i -ой строки и j -го столбца матрицы А :

Составим так называемую присоединенную матрицу:

где– алгебраические дополнения соответствующих элементовматрицы А .
Заметим, что алгебраические дополнения элементов строк матрицы А размещаются в соответствующих столбцах матрицы Ã , то есть одновременно производится транспонирование матрицы.
Разделив все элементы матрицы Ã на Δ – величину определителя матрицы А , получим в результате обратную матрицу:

Отметим ряд особых свойств обратной матрицы:
1) для данной матрицы А ее обратная матрица является единственной;
2) если существует обратная матрица , то правая обратная и левая обратная матрицы совпадают с ней;
3) особенная (вырожденная) квадратная матрица не имеет обратной матрицы.

Основные свойства обратной матрицы:
1) определитель обратной матрицы и определитель исходной матрицы являются обратными величинами;
2) обратная матрица произведения квадратных матриц равна произведениюобратных матриц сомножителей, взятому в обратном порядке:

3) транспонированная обратная матрица равна обратной матрице от данной транспонированной матрицы:

П р и м е р. Вычислить матрицу, обратную данной.


Top